Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 138
1.
Cells ; 13(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38667271

Even with the best infection control protocols in place, the risk of a hospital-acquired infection of the surface of an implanted device remains significant. A bacterial biofilm can form and has the potential to escape the host immune system and develop resistance to conventional antibiotics, ultimately causing the implant to fail, seriously impacting patient well-being. Here, we demonstrate a 4 log reduction in the infection rate by the common pathogen S. aureus of 3D-printed polyaryl ether ketone (PAEK) polymeric surfaces by covalently binding the antimicrobial peptide Mel4 to the surface using plasma immersion ion implantation (PIII) treatment. The surfaces with added texture created by 3D-printed processes such as fused deposition-modelled polyether ether ketone (PEEK) and selective laser-sintered polyether ketone (PEK) can be equally well protected as conventionally manufactured materials. Unbound Mel4 in solution at relevant concentrations is non-cytotoxic to osteoblastic cell line Saos-2. Mel4 in combination with PIII aids Saos-2 cells to attach to the surface, increasing the adhesion by 88% compared to untreated materials without Mel4. A reduction in mineralisation on the Mel4-containing surfaces relative to surfaces without peptide was found, attributed to the acellular portion of mineral deposition.


Antimicrobial Peptides , Benzophenones , Polymers , Printing, Three-Dimensional , Prostheses and Implants , Staphylococcus aureus , Humans , Staphylococcus aureus/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/metabolism , Prostheses and Implants/adverse effects , Polymers/chemistry , Polymers/pharmacology , Biofilms/drug effects , Ketones/chemistry , Ketones/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Surface Properties , Bone and Bones/drug effects , Bone and Bones/metabolism , Orthopedics
3.
Small ; : e2309736, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38459644

The direct alcohol fuel cells (DAFCs) rely on alcohol oxidation reactions (AORs) to produce electricity, which require catalysts with optimized electronic structure to accelerate the sluggish AORs. Herein, an epitaxial growth of Pd layer onto the pentatwinned Au@Ag core-shell nanorods (NRs) is reported to synthesize highly strained Au@AgPd core-shell NRs. The tensile strain in the AgPd shell of the Au@AgPd nanorods (NRs) arises not only from the core-shell lattice mismatch but also from twinning and lattice distortion occurring at the five twinned boundaries present in the structure. Theoretical simulations prove that the presence of tensile strains in the AgPd layer leads to a significant upward shift of the d-band center of the Pd site toward the Fermi level which remarkably changes the adsorption energy of alcohols on the surface. Highly strained Au@AgPd NRs show exceptional mass activities in electrochemical oxidation of biomass-derived alcohols (ethylene glycol, ethanol, and glycerol) reaching up to 18.66, 15.6, and 7.90 A mgpd -1 , respectively. These values are 23.3, 23.6, and 23.2 times higher than commercial Pd/C catalysts. This strain engineering strategy set the platform for the design and synthesis of highly efficient and versatile catalysts for the construction of high-performance DAFCs.

4.
Nat Mater ; 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38514846

Limitations in electrochemical performance as well as supply chain challenges have rendered positive electrode materials a critical bottleneck for Li-ion batteries. State-of-the-art Li-ion batteries fall short of accessing theoretical capacities. As such, there is intense interest in the design of strategies that enable the more effective utilization of active intercalation materials. Pre-intercalation with alkali-metal ions has attracted interest as a means of accessing higher reversible capacity and improved rate performance. However, the structural basis for improvements in electrochemical performance remains mostly unexplored. Here we use topochemical single-crystal-to-single-crystal transformations in a tunnel-structured ζ-V2O5 positive electrode to illustrate the effect of pre-intercalation in modifying the host lattice and altering diffusion pathways. Furthermore, operando synchrotron X-ray diffraction is used to map Li-ion site preferences and occupancies as a function of the depth of discharge in pre-intercalated materials. Na- and K-ion intercalation 'props open' the one-dimensional tunnel, reduces electrostatic repulsions between inserted Li ions and entirely modifies diffusion pathways, enabling orders of magnitude higher Li-ion diffusivities and accessing higher capacities. Deciphering the atomistic origins of improved performance in pre-intercalated materials on the basis of single-crystal-to-single-crystal topochemical transformation and operando diffraction studies paves the way to site-selective modification approaches for positive electrode design.

5.
Mater Horiz ; 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38516931

Despite impressive demonstrations of memristive behavior with halide perovskites, no clear pathway for material and device design exists for their applications in neuromorphic computing. Present approaches are limited to single element structures, fall behind in terms of switching reliability and scalability, and fail to map out the analog programming window of such devices. Here, we systematically design and evaluate robust pyridinium-templated one-dimensional halide perovskites as crossbar memristive materials for artificial neural networks. We compare two halide perovskite 1D inorganic lattices, namely (propyl)pyridinium and (benzyl)pyridinium lead iodide. The absence of conjugated, electron-rich substituents in PrPyr+ prevents edge-to-face type π-stacking, leading to enhanced electronic isolation of the 1D iodoplumbate chains in (PrPyr)[PbI3], and hence, superior resistive switching performance compared to (BnzPyr)[PbI3]. We report outstanding resistive switching behaviours in (PrPyr)[PbI3] on the largest flexible crossbar implementation (16 × 16) to date - on/off ratio (>105), long term retention (105 s) and high endurance (2000 cycles). Finally, we put forth a universal approach to comprehensively map the analog programming window of halide perovskite memristive devices - a critical prerequisite for weighted synaptic connections in artificial neural networks. This consequently facilitates the demonstration of accurate handwritten digit recognition from the MNIST database based on spike-timing-dependent plasticity of halide perovskite memristive synapses.

6.
Inorg Chem ; 63(13): 6092-6102, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38507817

In this work, we illustrated the design and development of a metal-coordinated porous organic polymer (POP) namely VO@TPA-POP via a post-synthetic metalation strategy to incorporate oxo-vanadium sites in a pristine polymer (TPA-POP) having acetylacetonate (acac) as anchoring moiety. The as-synthesized VO@TPA-POP exhibited highly robust and porous framework, which has been utilized for thioanisole (TA) oxidation to its corresponding sulfoxide. The catalyst demonstrated notable stability and recyclability by maintaining its catalytic activity over multiple reaction cycles without any significant loss in activity. The X-ray absorption spectroscopy (XAS) and density functional theory (DFT) analysis establish the existence of V(+4) oxidation state along with the VO(O)4 active sites into the porous network and the most energetically feasible mechanistic pathway involved in the TA oxidation, respectively, indicating the role of electron density associated with vanadium center during the catalytic transformation. Thus, this work aims at the demonstration of versatility and potential of VO@TPA-POP as a porous heterogeneous catalyst for the TA oxidation followed by decontamination of sulfur mustards (HD's) to their corresponding less toxic sulfoxides in a more efficient and greener way.

7.
Cont Lens Anterior Eye ; 47(2): 102124, 2024 Apr.
Article En | MEDLINE | ID: mdl-38341309

BACKGROUND: Ocular infections caused by antibiotic-resistant pathogens can result in partial or complete vision loss. The development of pan-resistant microbial strains poses a significant challenge for clinicians as there are limited antimicrobial options available. Synthetic peptoids, which are sequence-specific oligo-N-substituted glycines, offer potential as alternative antimicrobial agents to target multidrug-resistant bacteria. METHODS: The antimicrobial activity of synthesised peptoids against multidrug-resistant (MDR) ocular pathogens was evaluated using the microbroth dilution method. Hemolytic propensity was assessed using mammalian erythrocytes. Peptoids were also incubated with proteolytic enzymes, after which their minimum inhibitory activity against bacteria was re-evaluated. RESULTS: Several alkylated and brominated peptoids showed good inhibitory activity against multidrug-resistant Pseudomonas aeruginosa strains at concentrations of ≤15 µg mL-1 (≤12 µM). Similarly, most brominated compounds inhibited the growth of methicillin-resistant Staphylococcus aureus at 1.9 to 15 µg mL-1 (12 µM). The N-terminally alkylated peptoids caused less toxicity to erythrocytes. The peptoid denoted as TM5 had a high therapeutic index, being non-toxic to either erythrocytes or corneal epithelial cells, even at 15 to 22 times its MIC. Additionally, the peptoids were resistant to protease activity. CONCLUSIONS: Peptoids studied here demonstrated potent activity against various multidrug-resistant ocular pathogens. Their properties make them promising candidates for controlling vision-related morbidity associated with eye infections by antibiotic-resistant strains.


Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Peptoids , Animals , Humans , Peptoids/pharmacology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Mammals
8.
ACS Appl Mater Interfaces ; 16(7): 8627-8638, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38345507

Chemical stability of hexagonal boron nitride (hBN) ultrathin layers in harsh electrolytes and the availability of nitrogen site in hBN to stabilize metals like Pt are used here to develop a high intrinsic activity hydrogen evolution reaction (HER) catalyst having low loaded Pt (5 weight% or <1 atomic%). A catalyst having a nonzero oxidation state for Pt (with a Pt-N bonding) is shown to be HER active even with low catalyst loadings (0.114 mgcm-2). Electronic modification of the shear exfoliated hBN sheets is achieved by Au nanoparticle-based surface decoration (hBN_Au), and further anchoring with Pt develops a catalyst (hBN_Au_Pt) with high turnover frequency for HER (∼15). The hBN_Au_Pt is shown to be a highly durable catalyst even after the accelerated durability test for 10000 cycles and temperature annealing at 100 °C. Density functional theory based calculations gave insights in to the electronic modifications of hBN with Au and the catalytic activity of the hBN_Au_Pt system, in line with the experimental studies, indicating the demonstration of a new class of catalyst system devoid of issues such as carbon corrosion and Pt leaching.

9.
ACS Nano ; 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38320982

The compositional engineering of lead-halide perovskite nanocrystals (NCs) via the A-site cation represents a lever to fine-tune their structural and electronic properties. However, the presently available chemical space remains minimal since, thus far, only three A-site cations have been reported to favor the formation of stable lead-halide perovskite NCs, i.e., Cs+, formamidinium (FA), and methylammonium (MA). Inspired by recent reports on bulk single crystals with aziridinium (AZ) as the A-site cation, we present a facile colloidal synthesis of AZPbBr3 NCs with a narrow size distribution and size tunability down to 4 nm, producing quantum dots (QDs) in the regime of strong quantum confinement. NMR and Raman spectroscopies confirm the stabilization of the AZ cations in the locally distorted cubic structure. AZPbBr3 QDs exhibit bright photoluminescence with quantum efficiencies of up to 80%. Stabilized with cationic and zwitterionic capping ligands, single AZPbBr3 QDs exhibit stable single-photon emission, which is another essential attribute of QDs. In particular, didodecyldimethylammonium bromide and 2-octyldodecyl-phosphoethanolamine ligands afford AZPbBr3 QDs with high spectral stability at both room and cryogenic temperatures, reduced blinking with a characteristic ON fraction larger than 85%, and high single-photon purity (g(2)(0) = 0.1), all comparable to the best-reported values for MAPbBr3 and FAPbBr3 QDs of the same size.

10.
Small ; : e2304587, 2023 Dec 10.
Article En | MEDLINE | ID: mdl-38072818

Sodium-ion batteries (SIBs) have received tremendous attention owing to their low cost, high working voltages, and energy density. However, the design and development of highly efficient SIBs represent a great challenge. Here, a unique and reliable approach is reported to prepare carbon nitride (CN) hybridized with nickel iron sulfide (NFCN) using simple reaction between Ni-Fe layered double hydroxide and dithiooxamide. The characterization results demonstrate that the hybridization with optimal amount of CN induces local distortion in the crystal structure of the hybrid, which would benefit SIB performance. Systematic electrochemical studies with a half-cell configuration show that the present hybrid structure exhibits a promising reversible specific capacity of 348 mAh g-1 at 0.1 A g-1 after 100 cycles with good rate capability. Simulation result reveals that the iron atoms in nickel iron sulfide act as a primary active site to accommodate Na+ ions. At last, with a full cell configuration using NFCN and Na3 V2 (PO4 )2 O2 F as the anode and cathode, respectively, the specific capacity appears to be ≈95 mAh g-1 after 50 cycles at 0.1 A g-1 condition. This excellent performance of these hybrids can be attributed to the synergistic effect of the incorporated CN species and the high conductivity of nickel-iron sulfide.

11.
J Phys Chem B ; 127(51): 11011-11022, 2023 Dec 28.
Article En | MEDLINE | ID: mdl-37972382

The water microstructure around propofol plays a crucial role in controlling their solubility in the binary mixture. The unusual nature of such a water microstructure can influence both translational and reorientational dynamics, as well as the water hydrogen bond network near propofol. We have carried out all-atom molecular dynamics simulations of five different compositions of the propylene glycol (PG)/water binary mixture containing propofol (PFL) molecules to investigate the differential behavior of water microsolvation shells around propofol, which is likely to control the propofol solubility. It is evident from the simulation snapshots for various compositions that the PG at high molecular ratio favors the water cluster and extended chainlike network that percolates within the PG matrix, where the propofol is in the dispersed state. We estimated that the radial distribution function indicates higher ordered water microstructure around propofol for high PG content, as compared to the lower PG content in the PG/water mixture. So, the hydrophilic PG regulates the stability of the water micronetwork around propofol and its solubility in the binary mixture. We observed that the translational and rotational mobility of water belonging to the propofol microsolvation shell is hindered for high PG content and relaxed toward the low PG molecular ratio in the PG/water mixture. It has been noticed that the structural relaxation of the hydrogen bond formed between the propofol and the water molecules present in the propofol microsolvation shell for all five compositions is found to be slower for high PG content and becomes faster on the way to low PG content in the mixture. Simultaneously, we calculated the intermittent residence time correlation function of the water molecules belonging to the microsolvation shell around the propofol for five different compositions and found a faster short time decay followed up with long time components. Again, the origin of such long time decay is primarily from the structural relaxation of the microsolvation shell around the propofol, where the high PG content shows the slower structural relaxation that turns faster as the PG content approaches to the other end of the compositions. So, our studies showed that the slower structural relaxation of the microsolvation shell around propofol for a high PG molecular ratio in the PG/water mixture correlate well with the extensive ordering of the water microstructure and restricted water mobility and facilitates the dissolution process of propofol in the binary mixture.

12.
Nat Commun ; 14(1): 6604, 2023 10 23.
Article En | MEDLINE | ID: mdl-37872151

Soft materials in nature are formed through reversible supramolecular assembly of biological polymers into dynamic hierarchical networks. Rational design has led to self-assembling peptides with structural similarities to natural materials. However, recreating the dynamic functional properties inherent to natural systems remains challenging. Here we report the discovery of a short peptide based on the tryptophan zipper (trpzip) motif, that shows multiscale hierarchical ordering that leads to emergent dynamic properties. Trpzip hydrogels are antimicrobial and self-healing, with tunable viscoelasticity and unique yield-stress properties that allow immediate harvest of embedded cells through a flick of the wrist. This characteristic makes Trpzip hydrogels amenable to syringe extrusion, which we demonstrate with examples of cell delivery and bioprinting. Trpzip hydrogels display innate bioactivity, allowing propagation of human intestinal organoids with apical-basal polarization. Considering these extensive attributes, we anticipate the Trpzip motif will prove a versatile building block for supramolecular assembly of soft materials for biotechnology and medicine.


Hydrogels , Tryptophan , Humans , Tryptophan/chemistry , Hydrogels/chemistry , Peptides/chemistry , Biotechnology , Organoids
13.
J Am Chem Soc ; 145(37): 20442-20450, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37691231

Halide exchange is a popular strategy to tune the properties of CsPbX3 nanocrystals after synthesis. However, while Cl → Br and Br → I exchanges proceed through the formation of stable mixed-halide nanocrystals, the Cl ⇌ I exchange is more elusive. Indeed, the large size difference between chloride and iodide ions causes a miscibility gap in the CsPbCl3-CsPbI3 system, preventing the isolation of stable CsPb(ClxI1-x)3 nanocrystals. Yet, previous works have claimed that a full CsPbCl3 → CsPbI3 exchange can be achieved. Even more interestingly, interrupting the exchange prematurely yields a mixture of CsPbCl3 and CsPbI3 nanocrystals that coexist without undergoing further transformation. Here, we investigate the reaction mechanism of CsPbCl3 → CsPbI3 exchange in nanocrystals. We show that the reaction proceeds through the early formation of iodide-doped CsPbCl3 nanocrystals covered by a monolayer shell of CsI. These nanocrystals then leap over the miscibility gap between CsPbCl3 and CsPbI3 by briefly transitioning to short-lived and nonrecoverable CsPb(ClxI1-x)3 nanocrystals, which quickly expel the excess chloride and turn into the chloride-doped CsPbI3 nanocrystals found in the final product.

14.
J Biomol Struct Dyn ; : 1-19, 2023 Sep 11.
Article En | MEDLINE | ID: mdl-37695635

Cancer is one of the most prominent causes of death worldwide and tubulin is a crucial protein of cytoskeleton that maintains essential cellular functions including cell division as well as cell signalling, that makes an attractive drug target for cancer drug development. 1,3,4-oxadiazoles disrupt microtubule causing G2-M phase cell cycle arrest and provide anti-proliferative effect. In this study, field-based 3D-QSAR models were developed using 62 bioactive anti-tubulin 1,3,4-oxadiazoles. The best model characterized by PLS factor 7 was rigorously validated using various statistical parameters. Generated 3D-QSAR model having high degree of confidence showed favourable and unfavourable contours around 1,3,4-oxadiazole core that assisted in defining proper spatial positioning of desired functional groups for better bioactivity. A five featured pharmacophore model (AAHHR_1) was developed using same ligand library and validated through enrichment analysis (BEDROC160.9 value = 0.59, Average EF 1% = 27.05, and AUC = 0.74). Total 30,212 derivatives of 1,3,4-oxadiazole obtained from PubChem database was prefiltered through validated pharmacophore model and docked in XP mode on binding cavity of tubulin protein (PDB code: 1SA0) which led into the identification of 11 HITs having docking scores between -7.530 and -9.719 kcal/mol while the reference compound Colchicine exerted docking score of -7.046 kcal/mol. Following the analysis of MM-GBSA and ADME studies, HIT1 and HIT4 emerged as the two promising hits. To verify their thermodynamic stability at the target site, molecular dynamic simulations were carried out. Both HITs were further subjected to DFT analysis to determine their HOMO-LUMO energy gap for ensuring their biological feasibility. Finally, molecular docking based structural exploration for 1,3,4-oxadiazoles to set up a lead of Formula I for further advancements of tubulin polymerization inhibitors as anti-cancer agents.Communicated by Ramaswamy H. Sarma.

15.
Materials (Basel) ; 16(14)2023 Jul 17.
Article En | MEDLINE | ID: mdl-37512322

Orthopedic-device-related infections are notorious for causing physical and psychological trauma to patients suffering from them. Traditional methods of treating these infections have relied heavily on antibiotics and are becoming ineffectual due to the rise of antibiotic-resistant bacteria. Mimics of antimicrobial peptides have emerged as exciting alternatives due to their favorable antibacterial properties and lack of propensity for generating resistant bacteria. In this study, the efficacy of an antibacterial polymer as a coating material for hydroxyapatite and glass surfaces, two materials with wide ranging application in orthopedics and the biomedical sciences, is demonstrated. Both physical and covalent modes of attachment of the polymer to these materials were explored. Polymer attachment to the material surfaces was confirmed via X-ray photoelectron spectroscopy and contact angle measurements. The modified surfaces exhibited significant antibacterial activity against the Gram-negative bacterium E. coli, and the activity was retained for a prolonged period on the surfaces of the covalently modified materials.

16.
Mol Neurobiol ; 60(11): 6424-6440, 2023 Nov.
Article En | MEDLINE | ID: mdl-37453995

Platelets play a significant role in the pathophysiology of ischemic stroke since they are involved in the formation of intravascular thrombus after erosion or rupture of the atherosclerotic plaques. Platelet (PLT) count and mean platelet volume (MPV) are the two significant parameters that affect the functions of platelets. In the current study, MPV and PLT count was evaluated using flow cytometry and a cell counter. SonoClot analysis was carried out to evaluate activated clot timing (ACT), clot rate (CR), and platelet function (PF). Genotyping was carried out using GSA and Sanger sequencing, and expression analysis was performed using RT-PCR. In silico analysis was carried out using the GROMACS tool and UNAFold. The interaction of significant proteins with other proteins was predicted using the STRING database. Ninety-six genes were analyzed, and a significant association of THPO (rs6141) and ARHGEF3 (rs1354034) was observed with the disease and its subtypes. Altered genotypes were associated significantly with increased MPV, decreased PLT count, and CR. Expression analysis revealed a higher expression in patients bearing the variant genotypes of both genes. In silico analysis revealed that mutation in the THPO gene leads to the reduced compactness of protein structure. mRNA encoded by mutated ARHGEF3 gene increases the half-life of mRNA. The two significant proteins interact with many other proteins, especially the ones involved in platelet activation, aggregation, erythropoiesis, megakaryocyte maturation, and cytoskeleton rearrangements, suggesting that they could be important players in the determination of MPV values. In conclusion, the current study demonstrated the role of higher MPV affected by genetic variation in the development of IS and its subtypes. The results of the current study also indicate that higher MPV can be used as a biomarker for the disease and altered genotypes, and higher MPV can be targeted for better therapeutic outcomes.


Ischemic Stroke , Thrombosis , Humans , Mean Platelet Volume , Platelet Count , Blood Platelets , Genomics
17.
Inorg Chem ; 62(31): 12345-12355, 2023 Aug 07.
Article En | MEDLINE | ID: mdl-37477874

Development of highly efficient, earth-abundant, and stable bifunctional electrocatalysts is pivotal for designing viable next-generation metal-air batteries. Cobalt-based phosphates provide a treasure house to design electrocatalysts, with a wide range of cation substitutions to further enhance their electrocatalytic activity. In particular, phosphates with distorted geometry show favorable binding efficiency toward water molecules with low overpotential. In the present work, zinc-substituted cobalt phosphate ZnCo2(PO4)2 was investigated. Its crystal structure was solved to a monoclinic framework built with CoO6 octahedra and distorted CoO5/ZnO5 trigonal bipyramid leading to efficient bifunctional electrocatalytic activity. It offers robust structural stability with onset potential values of 0.87 V (vs reversible hydrogen electrode (RHE)) and 1.50 V (vs RHE) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes, respectively, comparable to the precious metal catalysts. The origin and stability of the bifunctional activity were probed by combining ex situ diffraction and electron microscopy corroborated by ab initio calculations. Overall, zinc-substituted cobalt phosphate [ZnCo2(PO4)2] forms a potential bifunctional electrocatalyst with tunable local cobalt coordination that can be harnessed for metal-air batteries.

18.
RSC Adv ; 13(25): 16899-16906, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37288373

A facile one-step catalyst free methodology has been developed for the regioselective functionalization of 4,6-diphenylpyrimidin-2(1H)-ones under mild conditions. Selectivity towards the O-regioisomer was achieved by using Cs2CO3 in DMF without use of any coupling reagents. A total of 14 regioselective O-alkylated 4,6-diphenylpyrimidines were synthesized in 81-91% yield. In the DFT studies it was observed that the transition state for the formation of the O-regioisomer is more favourable with Cs2CO3 as compared to K2CO3. Furthermore, this methodology was extended to increase the O/N ratio for the alkylation of 2-phenylquinazolin-4(3H)-one derivatives.

19.
ACS Environ Au ; 3(3): 135-152, 2023 May 17.
Article En | MEDLINE | ID: mdl-37215436

Arsenic (As) is abundant in the environment and can be found in both organic (e.g., methylated) and inorganic (e.g., arsenate and arsenite) forms. The source of As in the environment is attributed to both natural reactions and anthropogenic activities. As can also be released naturally to groundwater through As-bearing minerals including arsenopyrites, realgar, and orpiment. Similarly, agricultural and industrial activities have elevated As levels in groundwater. High levels of As in groundwater pose serious health risks and have been regulated in many developed and developing countries. In particular, the presence of inorganic forms of As in drinking water sources gained widespread attention due to their cellular and enzyme disruption activities. The research community has primarily focused on reviewing the natural occurrence and mobilization of As. Yet, As originating from anthropogenic activities, its mobility, and potential treatment techniques have not been covered. This review summarizes the origin, geochemistry, occurrence, mobilization, microbial interaction of natural and anthropogenic-As, and common remediation technologies for As removal from groundwater. In addition, As remediation methods are critically evaluated in terms of practical applicability at drinking water treatment plants, knowledge gaps, and future research needs. Finally, perspectives on As removal technologies and associated implementation limitations in developing countries and small communities are discussed.

20.
J Am Chem Soc ; 2023 Apr 05.
Article En | MEDLINE | ID: mdl-37018652

A highly active and stable Cu-based catalyst for CO2 to CO conversion was demonstrated by creating a strong metal-support interaction (SMSI) between Cu active sites and the TiO2-coated dendritic fibrous nano-silica (DFNS/TiO2) support. The DFNS/TiO2-Cu10 catalyst showed excellent catalytic performance with a CO productivity of 5350 mmol g-1 h-1 (i.e., 53,506 mmol gCu-1 h-1), surpassing that of almost all copper-based thermal catalysts, with 99.8% selectivity toward CO. Even after 200 h of reaction, the catalyst remained active. Moderate initial agglomeration and high dispersion of nanoparticles (NPs) due to SMSI made the catalysts stable. Electron energy loss spectroscopy confirmed the strong interactions between copper NPs and the TiO2 surface, supported by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy. The H2-temperature programmed reduction (TPR) study showed α, ß, and γ H2-TPR signals, further confirming the presence of SMSI between Cu and TiO2. In situ Raman and UV-vis diffuse reflectance spectroscopy studies provided insights into the role of oxygen vacancies and Ti3+ centers, which were produced by hydrogen, then consumed by CO2, and then again regenerated by hydrogen. These continuous defect generation-regeneration processes during the progress of the reaction allowed long-term high catalytic activity and stability. The in situ studies and oxygen storage complete capacity indicated the key role of oxygen vacancies during catalysis. The in situ time-resolved Fourier transform infrared study provided an understanding of the formation of various reaction intermediates and their conversion to products with reaction time. Based on these observations, we have proposed a CO2 reduction mechanism, which follows a redox pathway assisted by hydrogen.

...